skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mahadevan, Amala"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Monami is the synchronous waving of a submerged seagrass bed in response to unidirectional fluid flow. Here we develop a multiphase model for the dynamical instabilities and flow-driven collective motions of buoyant, deformable seagrass. We show that the impedance to flow due to the seagrass results in an unstable velocity shear layer at the canopy interface, leading to a periodic array of vortices that propagate downstream. Our simplified model, configured for unidirectional flow in a channel, provides a better understanding of the interaction between these vortices and the seagrass bed. Each passing vortex locally weakens the along-stream velocity at the canopy top, reducing the drag and allowing the deformed grass to straighten up just beneath it. This causes the grass to oscillate periodically even in the absence of water waves. Crucially, the maximal grass deflection is out of phase with the vortices. A phase diagram for the onset of instability shows its dependence on the fluid Reynolds number and an effective buoyancy parameter. Less buoyant grass is more easily deformed by the flow and forms a weaker shear layer, with smaller vortices and less material exchange across the canopy top. While higher Reynolds number leads to stronger vortices and larger waving amplitudes of the seagrass, waving amplitude is maximized at intermediate grass buoyancy. All together, our theory and computations develop an updated schematic of the instability mechanism consistent with experimental observations. 
    more » « less
  2. Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate. 
    more » « less
  3. Abstract While lee-wave generation has been argued to be a major sink for the 1-TW wind work on the ocean’s circulation, microstructure measurements in the Antarctic Circumpolar Currents find dissipation rates as much as an order of magnitude weaker than linear lee-wave generation predictions in bottom-intensified currents. Wave action conservation suggests that a substantial fraction of lee-wave radiation can be reabsorbed into bottom-intensified flows. Numerical simulations are conducted here to investigate generation, reabsorption, and dissipation of internal lee waves in a bottom-intensified, laterally confined jet that resembles a localized abyssal current over bottom topography. For the case of monochromatic topography with |kU0| ≈ 0.9N, wherekis the along-stream topographic wavenumber, |U0| is the near-bottom flow speed, andNis the buoyancy frequency; Reynolds-decomposed energy conservation is consistent with linear wave action conservation predictions that only 14% of lee-wave generation is dissipated, with the bulk of lee-wave energy flux reabsorbed by the bottom-intensified flow. Thus, water column reabsorption needs to be taken into account as a possible mechanism for reducing the lee-wave dissipative sink for balanced circulation. 
    more » « less
  4. Abstract The Bay of Bengal (BoB) spans >2.2 million km2in the northeastern Indian Ocean and is bordered by dense populations that depend upon its resources. Over recent decades, a shift from larger phytoplankton to picoplankton has been reported, yet the abundance, activity, and composition of primary producer communities are not well‐characterized. We analysed the BoB regions during the summer monsoon.Prochlorococcusranged up to 3.14 × 105cells mL−1in the surface mixed layer, averaging 1.74 ± 0.46 × 105in the upper 10 m and consistently higher thanSynechococcusand eukaryotic phytoplankton. V1‐V2 rRNA gene amplicon analyses showed the High Light II (HLII) ecotype formed 98 ± 1% ofProchlorococcusamplicons in surface waters, comprising six oligotypes, with the dominant oligotype accounting for 65 ± 4% of HLII. Diel sampling of a coherent water mass demonstrated evening onset of cell division and rapidProchlorococcusgrowth between 1.5 and 3.1 div day−1, based on cell cycle analysis, as confirmed by abundance‐based estimates of 2.1 div day−1. Accumulation ofProchlorococcusproduced by ultradian growth was restricted by high loss rates. Alongside prior Arabian Sea and tropical Atlantic rates, our results indicateProchlorococcusgrowth rates should be reevaluated with greater attention to latitudinal zones and influences on contributions to global primary production. 
    more » « less
  5. null (Ed.)
  6. Abstract The Bay of Bengal (BoB) is a 2,600,000 km2expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients—which have low temperature variation (27–29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters,Prochlorococcusaveraged 11.7 ± 4.4 × 104 cells ml−1, predominantly HLII, whereas LLII and ‘rare’ ecotypes, HLVI and LLVII, dominated in the SCM.Synechococcusaveraged 8.4 ± 2.3 × 104 cells ml−1in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites,OstreococcusClade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea‐influenced high salinity (southerly; prasinophytes) to freshwater‐influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyteMicromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml−1, surface) where a novelOstreococcuswas revealed, named hereOstreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto ‘rare’ picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change. 
    more » « less